
C05 12/08/2010 14:19:53 Page 140

To prove the Preservation of Intervals Theorem 5.3.10, we will use Theorem 2.5.1
characterizing intervals.

5.3.10 Preservation of Intervals Theorem Let I be an interval and let f : I ! R be
continuous on I. Then the set f (I) is an interval.

Proof. Let a;b 2 f ðIÞ with a < b; then there exist points a; b 2 I such that a ¼ f ðaÞ
and b ¼ f ðbÞ. Further, it follows from Bolzano’s Intermediate Value Theorem 5.3.7
that if k 2 ða;bÞ then there exists a number c 2 I with k ¼ f ðcÞ 2 f ðIÞ. Therefore
½a;b% & f ðIÞ, showing that f (I ) possesses property (1) of Theorem 2.5.1. Therefore
f (I ) is an interval. Q.E.D.

Exercises for Section 5.3

1. Let I :¼ ½a; b% and let f : I ! R be a continuous function such that f ðxÞ > 0 for each x in I.
Prove that there exists a number a > 0 such that f ðxÞ ' a for all x 2 I.

2. Let I :¼ ½a; b% and let f : I ! R and g : I ! R be continuous functions on I. Show that the set
E :¼ fx 2 I : f ðxÞ ¼ gðxÞg has the property that if ðxnÞ & E and xn ! x0, then x0 2 E.

3. Let I :¼ ½a; b% and let f : I ! R be a continuous function on I such that for each x in I there
exists y in I such that j f ðyÞj ( 1

2 j f ðxÞj. Prove there exists a point c in I such that f ðcÞ ¼ 0.

4. Show that every polynomial of odd degree with real coefficients has at least one real root.

5. Show that the polynomial pðxÞ :¼ x4 þ 7x3 * 9 has at least two real roots. Use a calculator to
locate these roots to within two decimal places.

6. Let f be continuous on the interval [0, 1] to R and such that f ð0Þ ¼ f ð1Þ. Prove that there exists
a point c in [0, 12] such that f ðcÞ ¼ f cþ 1

2

! "
. [Hint: Consider gðxÞ ¼ f ðxÞ * f xþ 1

2

! "
.] Conclude

that there are, at any time, antipodal points on the earth’s equator that have the same
temperature.

7. Show that the equation x ¼ cos x has a solution in the interval ½0;p=2%. Use the Bisection
Method and a calculator to find an approximate solution of this equation, with error less than
10*3.

8. Show that the function f ðxÞ :¼ 2 ln xþ
ffiffiffi
x

p
* 2 has root in the interval [1, 2], Use the Bisection

Method and a calculator to find the root with error less than 10*2.

9. (a) The function f ðxÞ :¼ ðx* 1Þðx* 2Þðx* 3Þðx* 4Þðx* 5Þ has five roots in the interval
[0, 7]. If the Bisection Method is applied on this interval, which of the roots is located?

(b) Same question for gðxÞ :¼ ðx* 2Þðx* 3Þðx* 4Þðx* 5Þðx* 6Þ on the interval [0, 7].

10. If the Bisection Method is used on an interval of length 1 to find pn with error j pn * cj < 10*5,
determine the least value of n that will assure this accuracy.

11. Let I :¼ ½a; b%, let f : I ! R be continuous on I, and assume that f ðaÞ < 0; f ðbÞ > 0. Let
W :¼ fx 2 I : f ðxÞ < 0g, and let w :¼ supW . Prove that f ðwÞ ¼ 0. (This provides an alter-
native proof of Theorem 5.3.5.)

12. Let I :¼ ½0;p=2% and let f : I ! R be defined by f ðxÞ :¼ supfx2; cos xg for x 2 I. Show there
exists an absolute minimum point x0 2 I for f on I. Show that x0 is a solution to the equation
cos x ¼ x2.

13. Suppose that f : R ! R is continuous on R and that lim
x!*1

f ¼ 0 and lim
x!1

f ¼ 0. Prove that f is
bounded on R and attains either a maximum or minimum on R . Give an example to show that
both a maximum and a minimum need not be attained.

14. Let f : R ! R be continuous on R and let b 2 R . Show that if x0 2 R is such that f ðx0Þ < b,
then there exists a d-neighborhood U of x0 such that f ðxÞ < b for all x 2 U.
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15. Examine which open [respectively, closed] intervals are mapped by f ðxÞ :¼ x2 for x 2 R onto
open [respectively, closed] intervals.

16. Examine the mapping of open [respectively, closed] intervals under the functions gðxÞ :¼
1=ðx2 þ 1Þ and hðxÞ :¼ x3 for x 2 R.

17. If f : ½0; 1& ! R is continuous and has only rational [respectively, irrational] values, must f be
constant? Prove your assertion.

18. Let I :¼ ½a; b& and let f : I ! R be a (not necessarily continuous) function with the property that
for every x 2 I, the function f is bounded on a neighborhood Vdx xð Þ of x (in the sense of
Definition 4.2.1). Prove that f is bounded on I.

19. Let J :¼ ða; bÞ and let g : J ! R be a continuous function with the property that for every x 2 J,
the function g is bounded on a neighborhood VdxðxÞ of x. Show by example that g is not
necessarily bounded on J.

Section 5.4 Uniform Continuity

Let A ' R and let f : A ! R . Definition 5.1.1 states that the following statements are
equivalent:

(i) f is continuous at every point u 2 A;

(ii) given e > 0 and u 2 A, there is a dðe; uÞ > 0 such that for all x such that x 2 A
and jx( uj < dðe; uÞ, then j f ðxÞ ( f ðuÞj < e.

The point we wish to emphasize here is that d depends, in general, on both e > 0 and
u 2 A. The fact that d depends on u is a reflection of the fact that the function fmay change
its values rapidly near certain points and slowly near other points. [For example, consider
f ðxÞ :¼ sinð1=xÞ for x > 0; see Figure 4.1.3.]

Now it often happens that the function f is such that the number d can be chosen to be
independent of the point u 2 A and to depend only on e. For example, if f ðxÞ :¼ 2x for all
x 2 R , then

j f ðxÞ ( f ðuÞj ¼ 2jx( uj;

and so we can choose dðe; uÞ :¼ e=2 for all e > 0 and all u 2 R . (Why?)
On the other hand if gðxÞ :¼ 1=x for x 2 A :¼ fx 2 R : x > 0g, then

ð1Þ gðxÞ ( gðuÞ ¼ u( x

ux
:

If u 2 A is given and if we take

ð2Þ dðe; uÞ :¼ inf 1
2 u;

1
2 u

2e
! "

;

then if jx( uj < dðe; uÞ, we have jx( uj < 1
2 u so that

1
2 u < x < 3

2 u, whence it follows that
1=x < 2=u. Thus, if jx( uj < 1

2 u, the equality (1) yields the inequality

ð3Þ jgðxÞ ( gðuÞj ) ð2=u2Þjx( uj:

Consequently, if jx( uj < dðe; uÞ, then (2) and (3) imply that

jgðxÞ ( gðuÞj < ð2=u2Þ 1
2 u

2e
# $

¼ e:

We have seen that the selection of dðe; uÞ by the formula (2) ‘‘works’’ in the sense that it
enables us to give a value of d that will ensure that jgðxÞ ( gðuÞj < e when jx( uj < d and
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We shall close this section by stating the important theorem of Weierstrass con-
cerning the approximation of continuous functions by polynomial functions. As would be
expected, in order to obtain an approximation within an arbitrarily preassigned e > 0,
we must be prepared to use polynomials of arbitrarily high degree.

5.4.14 Weierstrass Approximation Theorem Let I ¼ ½a; b# and let f : I ! R be a
continuous function. If e > 0 is given, then there exists a polynomial function pe such that
f xð Þ & pe xð Þj j < e for all x 2 I.

There are a number of proofs of this result. Unfortunately, all of them are rather
intricate, or employ results that are not yet at our disposal. (A proof can be found in Bartle,
ERA, pp. 169–172, which is listed in the References.)

Exercises for Section 5.4

1. Show that the function f xð Þ :¼ 1=x is uniformly continuous on the set A :¼ a; 1Þ½ , where a is a
positive constant.

2. Show that the function f xð Þ :¼ 1=x2 is uniformly continuous on A :¼ 1; 1Þ½ , but that it is not
uniformly continuous on B :¼ 0; 1ð Þ.

3. Use the Nonuniform Continuity Criterion 5.4.2 to show that the following functions are not
uniformly continuous on the given sets.
(a) f xð Þ :¼ x2; A :¼ 0; 1Þ½ .
(b) g xð Þ :¼ sin 1=xð Þ; B :¼ 0;1ð Þ .

4. Show that the function f xð Þ :¼ 1= 1þ x2ð Þ for x 2 R is uniformly continuous on R .
5. Show that if f and g are uniformly continuous on a subset A of R , then f þ g is uniformly

continuous on A.

6. Show that if f and g are uniformly continuous on A ( R and if they are both bounded on A, then
their product fg is uniformly continuous on A.

7. If f xð Þ :¼ x and g xð Þ :¼ sin x, show that both f and g are uniformly continuous on R , but that
their product fg is not uniformly continuous on R .

8. Prove that if f and g are each uniformly continuous on R , then the composite function f ) g is
uniformly continuous on R .

9. If f is uniformly continuous on A ( R , and f xð Þj j * k > 0 for all x 2 A, show that 1=f is
uniformly continuous on A.

10. Prove that if f is uniformly continuous on a bounded subset A of R , then f is bounded on A.

11. If g xð Þ :¼
ffiffiffi
x

p
for x 2 0; 1½ #, show that there does not exist a constant K such that g xð Þj j +

K xj j for all x 2 0; 1½ #. Conclude that the uniformly continuous g is not a Lipschitz function
on [0, 1].

12. Show that if f is continuous on [0, 1) and uniformly continuous on [a, 1) for some positive
constant a, then f is uniformly continuous on [0, 1).

13. Let A ( R and suppose that f : A ! R has the following property: for each e > 0 there exists a
function ge : A ! R such that ge is uniformly continuous on A and f xð Þ & ge xð Þj j < e for all
x 2 A. Prove that f is uniformly continuous on A.

14. A function f : R ! R is said to be periodic on R if there exists a number p > 0 such that
f xþ pð Þ ¼ f xð Þ for all x 2 R . Prove that a continuous periodic function on R is bounded and
uniformly continuous on R .
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15. Let f and g be Lipschitz functions on A.
(a) Show that the sum f þ g is also a Lipschitz function on A.
(b) Show that if f and g are bounded on A, then the product fg is a Lipschitz function on A.
(c) Give an example of a Lipschitz function f on [0,1) such that its square f 2 is not a Lipschitz

function.

16. A function is called absolutely continuous on an interval I if for any e > 0 there exists a d > 0
such that for any pair-wise disjoint subintervals xk; yk½ #; k ¼ 1; 2; . . . ; n, of I such thatP

xk % ykj j < d we have
P

f xkð Þ % f ykð Þj j < e. Show that if f satisfies a Lipschitz condition
on I, then f is absolutely continuous on I.

Section 5.5 Continuity and Gaugesy

Wewill now introduce some concepts that will be used later—especially in Chapters 7 and
10 on integration theory. However, we wish to introduce the notion of a ‘‘gauge’’ now
because of its connection with the study of continuous functions. We first define the notion
of a tagged partition of an interval.

5.5.1 Definition A partition of an interval I :¼ ½a; b# is a collection P ¼ fI1; . . . ; Ing of
non-overlapping closed intervals whose union is [a, b]. We ordinarily denote the intervals
by Ii :¼ ½xi%1; xi#, where

a ¼ x0 < ( ( ( < xi%1 < xi < ( ( ( < xn ¼ b:

The points xi ði ¼ 0; . . . ; nÞ are called the partition points of P. If a point ti has been
chosen from each interval Ii, for i¼ 1, . . . , n, then the points ti are called the tags and the
set of ordered pairs

P( ¼ ðI1; t1Þ; . . . ; ðIn; tnÞf g

is called a tagged partition of I. (The dot signifies that the partition is tagged.)

The ‘‘fineness’’ of a partitionP refers to the lengths of the subintervals inP. Instead of
requiring that all subintervals have length less than some specific quantity, it is often useful
to allow varying degrees of fineness for different subintervals Ii in P. This is accomplished
by the use of a ‘‘gauge,’’ which we now define.

5.5.2 Definition A gauge on I is a strictly positive function defined on I. If d is a gauge on
I, then a (tagged) partition _P is said to be d-fine if

ð1Þ ti 2 Ii ) ti % dðtiÞ; ti þ dðtiÞ½ # for i ¼ 1; . . . ; n :

We note that the notion of d-fineness requires that the partition be tagged, so we do not
need to say ‘‘tagged partition’’ in this case.

A gauge d on an interval I assigns an interval t% dðtÞ; tþ dðtÞ½ # to each point t 2 I. The
d-fineness of a partition _P requires that each subinterval Ii of _P is contained in the interval
determined by the gauge d and the tag ti for that subinterval. This is indicated by the
inclusions in (1); see Figure 5.5.1. Note that the length of the subintervals is also controlled
by the gauge and the tags; the next lemma reflects that control.

yThis section can be omitted on a first reading of this chapter.
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